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A class of self-similar solutions of the equations of one-dimensional motion (with plane 
waves) of soft soil is considered. The influence of compressibility of the soil during 
unloading on the motion characteristics is investigated. 

1, In conformfty with 111, the motions of soft soil are described by the system of equa- 
tions 

W = 1/2eafsafh I = y2saBs,,-, p = p(p, p,), F = F(P, p,h G = G(P, P*) 

Here t iS the time, zk Cartesian COOtdinateS, vk velocity COIIIpOnentS, p density, fk 
volume external force components, p hydrodynamic pressure, .sik stress deviator corn* 
ponents, 1 takes the value 1 when the rate of change of the stress deviator is determined 
according to Jaumann @I, and zero if the Jaumann supplements are ignored ; F (p, p*) 
and G (p, p4) are functions characterizing the mechanical properties of the soil. 

One-dimensional motions (with plane waves), which occur in the absence of gravity 
and other volume forces, are henceforth considered, All the motion parameters depend 
on just the one coordinate x = a+ I moreover 

21s = Z’s = 0, sss = $33 = - vz $1, 8x3 = SS3 = S3J = 0 

The system of equations describing the motion is 

W =- 3Tau f 32 = S/4 Y?i, u = 01, v = - $11, 4x = p + Y, -$ =+&& (2.2) 

Let a pressure PO be applied at the initial instant 1 = de to a free soil surface in&i- 
ally occupying rhe 2 > 0 half-space, and let it then change in time according to rhe 
law P = Pofp @la@) (1.3) 
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The function rp (@is assumed continuous and differentiable for g > 1, moreover 

cp (1) = 1, 9’ (1) < 0, it (g) < 1 for 5 > 1 and ‘p ($J = 0 for E < 1. 
A shock travels over the ground. If its velocity of propagation is supersonic (and this 

is henceforth always assumed), the solution of (1.2) should satisfy the following boundary 
and initial conditions : 

24 = h’(t), x = P,rp(t/d,) for 2 = h (t) 

U = (1 - pr/p)s’(t), x = prus* for 2 =s (t) 

h(z,)==s(?s) ==o (1.4) 

Here the equations x = h (t) and X = s (t) are the laws of ground surface and 

shockwave motion, respectively, pr is the density of the soil ahead of the shock. The 
form of the functions h (t) and S (t) is unknown in advance, and their determination 
is a part of the problem. 

It is henceforth assumed that p1 = con&, and a specific volume strain 8 is intro- 
duced in place of the density p according to the formula 

E = 1 - or/p 

Moreover, only such motions for which the additional conditions 

x <s P = P* for 11: = S (1) 0.5) 
are satisfied will henceforth be condidered, 

Great compactness in the formulation of the problem is achieved if it is written in 

Lagrange variables, to which we transform by means of the formulas 

t==z d.x = u&c + (1 - &)dZ (f-6) 

It is hence to consider the particles the surface the Lagrange 
t = = COW&. 

account of and (1.6). (1.2) can represented as 

$+$=o, &+$=o, $-#= +$(l _s)-~, P. = P, (0 

~~ - 8)--l, r=3/4Y~? e=e(p,p*)=G_* (1.7) 
* II 

The boundary conditions (1.4) become 

x = POCP (v%) for I = LO 

p = p,, u = ES’, x = &US for 

s (to) zi 0 

1 = 1, + s (z) (1.8) 

2, The mechanical model of the soil is determined by the form of the dependences 

8 = e (Pf P*h F = F (~7 p,f, G = G (P, PA 

The specific volume strain is henceforth represented as 

8 = (Palm)” f(n), a-c = PlP*1 n = const, 0 = const (2.1) 

f’ (a) > 0, f(1) = 1,’ 0 <n (1, f’ (1) <n, 0 Cf0 <I Vo = f(o)) 

For p = p* 
n = 1, 8 = E* (P*) = (P*lW 

i. e. the loading branch of the volume strain diagram is a power-series curve, Its own 
unloading branch corresponds to each value ofp, , but they are affine-similar curves. 

The parameter fo characterizes the residual volume strain : for fs = 0 there are no 
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residual strains, and volume elasticity is lacking for fa = 1 (i.e. the whole volume strain 
is residual). 

In conformity with the conceptions developed in p], the motion of soft soil can occur 
in two modes: with elastoplastic shear when w > 0,and with elastic shear when o = 0. 

The equation 1 = F @, Pt. , the plasticity condition, should be satisfied in the elas- 

toplastic mode. The function F (PC P*) is later represented as 

F = sl,a2p,2g (n) (a = cmst, g’ (n) > 0, g (1) = 1) (2.2) 
The function C; (p, p*,) is analogous to the shear modulus G, for elastic bodies, which 

is expressed in terms of the volume compression modulus K,and the Poisson ratio u of 
an elastic body thus 

By analogy with this formula, we can write 

G (PI P.) = 4 x (P# P.) K(P, P,) K = (I- 8) ($)-’ (2.3) 

Here the function x (p, p*) includes an indeterminacy in the function G @, p*). 
It follows from physical considerations that the function G @, p*) should remain finite 

when del8p s 0. The simplest representation for the function x (p, pr) which assures 
compliance with this condition, is 

x( Pf P,) = arf'(N (7 =const) (2.4) 
Taking account of (2.4) it follows from (2.3) that 

G (P, P*) = 8/2 ay (P&J (1 - e) (2.5) 
3, By virtue of (1.2) and (2.2) it follows from the plasticity condition I=F @, P*) 

that in the elastoplastic mode 
Y = ap,g (n) (3.1) 

Therefore, in the elastic mode o = 0 

w -= 
az 

- fG$(i -s)-’ or ‘g = 2~l’P*t’(n)g 

Here (2.5) has been taken into account. Hence 

Y = 2ayp* (f (n> - f0) (3.2) 

Here the additional condition that the stresses all vanish simultaneously has been 
taken into account. 

The equalities g (J-c) = 2y (f (n) - fo), g’ (a> = w’ (n) (3.3) 
which are a consequence of the assumed continuity of stresses during transition, should 
be satisfied in passing from the elastoplastic to the elastic mode. Equations (3.3) show 
that the transition occurs in each particle when the pressure p reaches the value 
pt = pent, where n, is a root of the equation 

r’ (nt) = 0 (r (3-c) = ‘/s g (n) (f (n) - f&l> (3.4) 
For p > pr elastoplastic shear occurs in the particle, for p <pt the shear strain is 

elastic. Equations (3.3) define the constant y = I? (art) in (2.4). It follows from (3.1) 
and (3.2) that 

y= up.*(=)* 
g@)(n>nt)* 

l(n)=(zr(f(n)-io)(n<n~) (3.5) 
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It is henceforth assumed that 3tt < 1. Consequently 

‘II, (1) = g (1) = 1 

It follows from (1. 8) that the equalities 

x= PO, 

‘iz 

u=uo== .-ii- ’ ( j s’ (To) = co --- EJ2 

are valid at the initial instant z = ~0. 
It will be convenient to reduce (1.7) and the boundary conditions (1.8) to dimension- 

less form for the sequel, by assuming 

z = z$, 1 = lo?, U = us; p = &P> p, = p’-p* 
1+a (3.6) 

y+?&u, x = P,T, e = EOF, s(z) = 1, (S - 1) 

The constant &J has been indefinite up to now, It is best to remove this indefiniteness 

by assuming I = cozs, CO = s’(zo). In dimensionless form Eqs. (1.7) are (the bar is 

omitted over the dimensionless quantities) 

2!E++o, $+o, e=p,“f(n), P,=P*@) 

x = P.~~~)? 33 = P/P,* 
J6+a*w 

xw>= iSa 
(3.7) 

The boundary conditions (1.8) become 

P* = 1, x@)=cp(r) for 1= 1 

u = ES’, p* = US’, 2-c = 1 for 1 =S(z) 

s (1) = S’ (1) I- 1 

(3.8) 

4. It can be shown (this has been done earlier in @J for g (n) = n) that there exists 
a one parameter family of functions ~0 (z, k) (a parameter of this family is denoted by 

k ) such that when the function of the surface pressure cp (‘t) from (3.8) belongs to this 
family. the solution of (3. ‘7) which satisfies the boundary conditions (3.8) can be expres- 

sed as 
u = u* (if6 (E), P = P* Or (Ut E = IS-f (4.1) 

where 6 (E) and 3t (g) satisfy some ordinary differential equations. Indeed, if a solution 

of (3.7) of the form (4.1) is sought, it will result in the equations 

x(n)=~$-&X’(n)E~ (4.2) 

6= *f+)sg -&.P% 

Since 6 and n depend only on E, by assumption, it is necessary that the coefficients in 
(4.2) depend only OR E or be constant. Hence 

Therefore 
Ep,‘&* = - m = con&, tu,‘iu, = - k = const 

p+ = I-“, u* = E-k 
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Because 4 * 5 8 (t) it follows that 

US L = _ f r;Tn-k+l Sm-k 8’ 
p:s 
p.ns 1 -.--x;E 

u*S 
k-mntl Sk-mn 8 

Hence 
m = 2kl(l + n), SW = 1 

where we have introduced the notation 
l-nk p=- 
1+fi 

Therefore 

The system (4.2) now becomes 

(4.3) 

(4.4) 

The solution of the system (4.5) is determined by the initial conditions 

sr (1) = 6 (1) = 1 (4.6) 

It is easy to see that the conditions of the shock (3.8) are satisfied automatically be- 

cause of (4.3), (4.4) and (4.6). It is now evident that the set of functions defined by the 
formula x0 (%I = x (n (Q&’ (4.7) 

again generates that one-parameter family (with parameter k) which we spoke of at the 
beginning of this Section. Solution of the system (3. ‘7) corresponding to the functions 

Cp (r) from the family X0 (‘I, /i) have a form defined by (4.1). and are hence self-similar 
solutions. An investigation of the properties of these solutions reduces to studying the 

solutions of the system of ordinary differential equations (4.5) which satisfy the initial 

conditions (4.6). It is convenient to transform (4.5) by introducing a new variable in 
place of Ej rl = ~--flW (4.8) 

The functions @ (rj) and ax (?j) will satisfy the ordinary differential equations 

d6 2k 
-q”= 

f’ (N x (JI) + V? (I$ n) x‘ (n) 6 
l+n+(i--n)k f ’ w - rl’x’ (Xl 

fi+a*oG x(n)= l+u ’ ‘lr)(n)- l if (n) (n > %) 
27 (f (n) - fo) (n < n*) 

(4.9) 

where stt is a root of the equations 

r’ (stt) = 0, y = r @t>, 

and the initial conditions 

r (n) = llng fn> (f (n) -f&l 
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n (1) = 6 (1) = 1 (4.10) 

Integration of Eqs. (4.9) with the initial conditions (4.10) for given functions f (SC), 
g (a) and constants n, k can be performed numerically with the greatest of ease. 

The functions f (n) and g (n) were given analytically as 

f(n)= “(~J~j)~,*~‘“, g(n)=(i-/3)n+P (P=mst) (4.11) 

The solution was found by the Runge-Kutta method on an M-20 computer in the Mos- 
cow University Computation Center. The constant j3 was taken equal to 0.01, the con- 
stants n and fs were given values beraween 0.1 and 0.9. As is easy to see, the solutions 

of (4,9) possess the following asymptotic representation as Q 4 OD : 

s _ ~171-2wnl (1-n) k) 
f ,y = c2q-Mi’ PI 

( C3 = con&, Cz L= const, l_s = s ki (4.12) 

In deriving (4.12) it was assumed that the condition R < ~1 has been satisfied. 

Equations (4.12) show that the integral curves corresponding to k < i in the (q-i, n) 
plane arrive at the origin with an infinite slope, while the slope will be finite for k =l. 
An infinite pressure pulse applied to the surface of the soil corresponds to this case 

(k< 1). 
For k > 1 the integral curves in the (q-l, n) plane will touch the axis of values of 

the variable q- 1 at the origin. In this case the pressure pulse will be finite. Numerical 

integration was carried out for the values k > 1; it was detected that it is necessary 

to select k < A-, (n, fo), because for k > k, the computer could not continue to solve 
the system (4.9) after some value rb (k, n, f~) of the variable q. This was associated 

with the fact that the quantity f’ (n) - q”x’ (Z ) in the denominators of the right 

sides of (4.9). vanished for rl = ?lr . The functions ni (q) and 6, (11) are found from 
the condition that the numerators and denominators on the right sides vanish simultane- 

ously. This condition then reduces to the equalities 

p’ (n) - $x’ (n) = 0, qx (Jr> + ‘/a (1 + n>e = 0 

The above functions form a singular solution of the system (4.9). For k > kl the solu- 
tion of the system (4.9) satisfying the initial conditions (4.10) intersects the singular 

solution at the point rl = Q. (An analytical investigation of this situation, although 
possible, is beyond the scope of this paper) (*). The functions ?I (rj) corresponding to 

*) It can be noted that kr = 03 for f0 = 1. For f. = 0.1 it has been established that 
k, < 4 for TZ = 0.7 and kl < 2 for n = 0.5. 

A curious fact is disclosed by using (4.12) if a shift in the ground surface is considered 

which is proportional to 00 

It is evident that 

$1 = 00 

If n < 1, then for 
tedly large although 

for E < 2 / (1 + n), 91 < 30 for k > 2 / (1 + n) 

i < k < 2 /ii -j- n) the surface shift can turn out to be unexpec- 

the surface pressure pulse will be finite. 
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k > 1 have a domain of negative values for q > qe (n, f~, k) (n (qs) = O), while 
the functions 6 (7) are always positive, For the same n and h- the negative values of 
n are greater iti absolute value, the grebter the fo. Of fundamental interest is the deter- 
mination of the surface pressure functions x0 @, k) which correspond to the soiutions 
found for (4.9). 

It follows from (4. l), (4.4) and (4.8) that 

Hence 
(4.13) 

Therefore 
Ito (x* hJ = x (n ~~~~~~~~~~-~ f&.*15) 

For k > 1 the domain of negative values of the functions ~a (rt k) indicates the 
presence of a rarefaction phase during the change in the pressure applied to the surface 
with time. 

Fig. 1 Fig. 2 

Pictured in Figs. 1 and 2 are the functions xb (z) corresponding to fixed values of the 
parameters k and f0 and different values of rz. Only curves corresponding to the bound- 
ary values of n, equal to 0.1 and 0.9, are hence superposed on both figures, The charac- 
ter of the curves in Figs. 1 and 2 suggests that the functions x0 corresponding ro constant 
values of k and $a differ slightly for different n. 

This is actually so if f. is not too small. For the majority of soft soils f& 0.5, hence, 
the reasoning expressed for such soils should be valid. It is shown in Fig. 3 that the sur- 
face pressure profiles vary as a function of k for constant n and A. A comparison between 
the curves in Fig. 3 permits the assertion that for identical laws of variation of the pres- 
sure applied to the surface of the ground the shock intensity in the soil will decrease 
more slowly, the smaller the residual volume strains (the shape of the loading branch of 
the volume strain diagram is assumed unchanged). This deduction is based on the fact 
that smaller k {for the identical nj corresponds to similar profiles of the function ‘&I (for 
example, the curve of &I corresponding to k a 1.4, f0 = 0.5 is near the curve of %cor- 
responding to k = 2, f0 = 0.9 so that witnout a coarse error they may not be distin- 
g&shed), i.e.to appro~mate~y fdentieal laws of variation of the surface pressure for small 
f. . And the smaller the k, the more intense the shock, as follows from (4* 4). (For times 
close to the initial instant the validity of this assertion can be proved eomplerely rigo- 
rously by examining the derivative dads). It is shown in Fig.4 how the surface pressure 
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profile varies for constant A and n as a function of f~. Since the law of shock motion is 
here identical, it is shown in Fig.4 how significant is the influence of the elasticity of 

the ground during unloading on its motion: the pressure profiles corresponding to lower 

values of f,, are considerably less inflated than the profiles for large values of fo. in 
complete conformity with the deduction on the influence of the elasticity of the soil 

during unloading on the shock damping law. 

Fig. 3 Fig. 4 

Fig. 5 Fig. 6 

It is of practical interest to know bow the & (rr &) profiles differ from the actual pro- 
files which occur during the explosion of a charge on the surface of the ground. 

Shown in Fig. 5 are pressure profiles @ (z, Ape) for a “point” spherical explosion in 

air 133 (dp, is the pressure drop in an air shock wave). 
The curves shown in Fig. 5 correspond to a definite selection of the time scale q,: for 

each curve q = T*, where r, is the time of arrival at the considered point of the ground 
by a shock of given intensity Ap,. For another choice of rO the curves in Fig. 5 are tramp 
formed in an affinely-similar manner. Fig.6 shows how the pressure function @ (T) cor- 
resending to Ap, = 3.91 is transformed for a different selection of the time scale to in 
conformity with the formula as - q,lm. A comparison between Figs. 3 and 6 allows the 

assumption that by selecting constants k and m (for given n, f. and AP,) it can be tried 
to achieve that the pressure profiles #a and cp be close. Excess optimism is of course out 
of place since, in general. the functions @ (a) and xG (T) are in no way interrelated, It can 
be considered a lucky chance that these attempts turned out to be successful for some 
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values of the parameters fs and Ap,often encountered. 
The self-similar solutions found permit an estimate of the influence of compressibility 

of the ground during unloading on the motion parameters even when there is no self- 
similarity. They can be used to verify the efficiency of the approximate methods of 
solution. 

The research was supervised by S. S. Grigorian, to whom the author is grateful, The 

author also expresses his thanks to G, I. Petrashen’ for useful remarks and comments. 
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The subject of this paper is the investigation of elastic solid bodies which conform to 
Hooke’s law 

‘15 = Cijmnemn (0.~1 

Here the tensor of elastic moduli c~ mn is considered to be a stationary random function 
of coordinates skwith isotropic mathematical expectation 

<c ijmn>= haSijSm*+EtD(6*m8j*+GjmSi*f WQ 

where ho and P” are invariant physical constants, 6ij is Kronecker’s tensor. 
Among such bodies are for example (in the region of small deformations) polycrystals 

without predominant directions of anisotropy and quasi-isotropic composite bodies. 

At the present time the case of macroscopically homogeneous deformation of statisti- 
cally isotropic homogeneous bodies has been studied in detail in g-43 and others. Here 
the relationship between the mathematical expectations of stress and strain tensors can 

be written in the form < bij> =2P<eij) + 31 a@ &*j (6.3 ) 

where 1\ and h are “effective” Lame’s constants and do not coincide with P” and X0. The 
constants mentioned can be calculated from given statistical characteristics of the sta- 
tionary random tensor cijmn by solving the t~~odirne~ional nonlinear stochastic prob- 
lem. An appropriate solution in the first approximation was obtained in /l]. Most general 


